CREEP OF POLYMER MATERIALS IN STRUCTURAL
ELEMENTS

N, I. Malinin

This paper is a survey of works published between 1964 and 1967, i.e., between the 2nd and 3ad All-
Union Conferences on Theoretical and Applied Mechanics. It was presented by the author at the latter
conference. Surveys of earlier works on creep of plastics [1] and on the mechanics of oriented fiberglass
plastics were published in the Transactions of the 20d All-Union Congress.

Creep in articles and structures made of polymers and polymer materials is, as a rule, more pro-
nounced than in metals. It occurs under mechanical stresses at fairly low temperatures, sometimes close
to room temperature, Hence, creep properties of polymers must be taken into consideration in calculations
of long-term strength, stability, etc. of articles and structures made of such materials.

Creep is one of the mechanical relaxation phenomena, Consideration of the latter is limited in this
survey to phenomenological aspects. In spite of its physical and chemical inhomogeneity, the material is
considered to be a quasihomogeneous continuous medium. Ounly in special cases in which the properties
of a composite material are investigated in terms of properties of its components, models of composite
media will be examined. In such cases, one of the phases will be considered as distributed in the other
in the form of separate inclusious.

Plastics, as regards their mechanical properties, are classified as isotropic or anisotropic materials.
The different behavior of isotropic and anisotropic materials and articles made of these may, obviously,
become apparent only when, for example, the strength of a material under complex stressing is considered
or when a more or less complex structure is investigated as a whole. Under conditions of simple stressing,
the behavior of an isotropic material does not differ phenomenologically from that of an anisotropic one.
For this reason, we shall first consider the fundamental laws of creep under conditions of simple stressing.
Incidentally, this aspect is also the mogt fully investigated.

Letus, first, consider the behavior of polymersunder constant stress throughout the duration of a test.

As an example, the curves of short duration creep of nonplasticized polyvinyl chloride at tempera-
ture T = 19°C, taken from [3], are shown in Fig. 1. The nominal stress was maintained constant through-
out individual tests. The several curves relate to different test stresses. These tests did not end in the
destruction of the sample, but cold elongation did occur under high stress and after some time after load
application., Creep tests in certain cases of brittle or highly elastic polymers did end in rupture of the
test piece as the result of appearance and propagation of cracks. For such materials the creep curve be~
gins to show from a certain point an increasing (instead of a decreasing, as at the beginning) rate of creep
which continuesupto the instant of the test piece destruction. The latter part of the creep curve for brittle
plastics is comparatively short and bends upward only slightly prior torupture. The region of increasing
creep rate of elastomers, particularly of the heavily loaded variety [4], is very prounounced, i.e., the point
of inflection of the creep curve appears long before rupture of the test piece and is followed by rapidly
increasing deformation, with the latter sometimes exceeding several times the deformation at the point
of inflection.

No attempts were apparently made to find a function which would adequately fit the eutire creep
curve, including its last section, for polymers, similar to that proposed by Endrade and used for de-
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scribing the creepof metals (see, e.g., [5], p. 171). However, this may

&%
a=Sbi ffélz '*/ﬁ not be necessary, since during the last stage of accelerated creep an
11 ,_L/ B intensive accumulation of damage (usually in the form of cracks) occurs
‘ V‘ =836 | o in the material, which is entirely unacceptable in an industrial article
227 o or structure. Because of this, calculation methods are based on re~
16 57 lationships defining the initial part of the creep curve along which the
777 strain rate monotonically decreases with time. A few of these methods
2 tsec are presented below, together with relevant references. Materials to

oo - s@ 200 which these relationships were applied and, in the case of prolonged
. tests, the duration of experiments are listed.
Fig. 1

Formulas Containing a Power Term. Sharma {6] (Penton), Obukhov [7] (Kapron, tests of up to 1000~h
duration), Bongiovanni [8] (cellulose acetate,polymethyl methacrylate, polycarbonate, chlorinated polyester),
Melent'ev [9] (polyethylene, polymethyl methacrylate,wood—laminate plastic, and others) had used for
defining the dependence of strain e on time t counted from the instant of load application an equation of the
form

&= g,ln ol
(¢4 andn are, respectively, parameters of the curve and of the material).

Findley [10] (see also [1, 5]; a number of thermo- and reactoplastic, textolite, fiberglass plastics;
tests up to and over 100,000-h duration), Sharma [11] (cellulose acetobutyrate; tests up to 100-h duration),
Melent'ev [9] (materials as quoted above, exponeunt n in (2) was always assumed equal 0.25), and Smotrin
and Chebanov {12] (textolite; tests up to 500-h duration) had used the relationship

e =g+ g™ {2)

The strain defined by Eq. (2) is assumed to consist of two terms: one time—ihdependent £y (it will be
called the momentary strain), and the second (the creep strain) increasing with time proportionally to £,

Melent'ev had used for describing the same experiments the three-term equation
[ T SRR S (3)

where the third term represents the strain increasing at a constant rate, Such straias are usually asso-
ciated with viscous or viscoplastic behavior of matter. It should be noted, however, that the third term
in Eq. (3) does not imply the presence of viscous or viscoplastic flow at constant nonzero stress propor-
tional to t. For example, Plazek had established that the deformation of zine polyphosphinate specimens,
while increasing under load in proportion to t, disappeared completely after removal of load, although

at first glance it could have been considered as viscous, i.e., these were elastic deformations. .

Logarithmic Relationships. Khlopotov [14] (polyethylene) and Melent’ev used the relationship

e==8p 18 lg¢ 4)

Lemmens [15] (elastomere fibers) and Melent'ev [9] [who had assumed parameter 7 in Eq. ) to
be equal zero] used the relationship

e=eo+te.lg (b +1) +eyt (5)
Ivanov and Sokolov [16] (organic glass test one year long) used the function
e=eotelg?(t +1) (6)

Exponential Functions. Bongiovanni [8] used the simplest exponential relationship corresponding to
Burger's four-element rheological model (in the experiments mentioned above). This model has a single
elastic recovery time or two relaxation times. Models with a limited number of elastic recovery or re-
laxation times areinadequate for describing the creep and relaxation of polymers, and are even less satis-
factory for determining the dynamic behavior of real materials. To obtain a better correlation between
theory and experimental results, the model is made more complex by the introduction of a large number
of elements with a correspondingly large set of recovery and relaxation times. In this manner, a spectral
method for the definition of mechanical relaxation behavior of polymers is obtained. Line, as well as

205



continuous or band, spectra are widely used in polymer mechanics. One of such
7 S kgt/ [ spectral models using the law of normal distribution yields the equation of the
mm? creep curve (Theocaris [17]) in the form

lg € [g ;] lg 62 erf (“‘ lg t/ IC) ( )

where k is the characteristic time and h is a parameter of the functiou of
normal distribution of recovery time.

Fig. 2 A very good correlation between experimental and calculated curves is
obtained with the use of the so-called fractional exponential functions in which
the time t appears as t& where k is a fraction. As an example, we write the function defining the elastic
aftereffect in plastic {(wood—laminate, fiberglass, and other plastics) in prolonged tests under stresses
below a certain critical value, called by Yatsenko [18] the limit of long~term strength, It is of the form

e = a- bexp[— a (t/t)] (®)

where o and ¢ are parameters of the material, ¢ and b are stress functions, and t4 the selected unit of
time. Fractional exponential functions of a more complex form are at present used in the application of

the theory of héredity to the solution of problems of strain, in polymer materials and their products. These
functions are in the form of power series expansions, and will be considered below.

We shall also mention the equatious of relaxation curves used by various authors for represeunting
the behavior under conditions of constaunt strain € = ¢4 = const.

Obukhov [7] had used the power relatiouship

—— %
R R L G DR b

5 9)

Here n is a parameter of the material and ¢ is the maximum stress reached at the instant t = t* of
ending of loading applied at a constant rate €° until € becomes equal to &;. Since u « 1, the author con-
siders it reasonable to assume that 1—n = 1, which yields the equation

g =0y (t/t¥)™ (10)

Wegener [19] used a series expansion in powers of In(l + t) as the equation of the relaxation curve of
polyamide~6. He has also noted the effect of the rate of relaxation €; at the beginning of the ¢ test on the
relaxation function [20] as

o= 3\ Ama [l (L4 )] (o) (11)

m, n
where m varies from 0 to +5, n from ~6 to + 3, and the coefficients A can be either positive or negative.

Theequationused by Theocaris [17] is similar to Eq. (7). Slonimskii [21] used an equation containing
an expouential function of fractional order of the form

() =0, +05r exp(-atk) 12)
where g, and o, are parameters of the curve and @ and k those of the material,

All of the above relationships for creep and relaxation curves describe more or less adequately the
creep of polymer materials in a certain average time rauge attainable in investigations. Attempts at
extrapolating these relationships to regions of very long or very short times t may yield estimates sig-
nificantly different from actual characteristics of the material. Furthermore, the simple relationships
cited above may not be satisfied in very wide intervals of time. Thus, for example, Tang [22] had des-
cribed the creep of polyethylene by (2) for times of less than 1-min duration, and by (4) when t > 1 min.

For estimating the long-term strength of an article intended for a long service life, it is important
to investigate the behavior of the material during counsiderable periods of time t which could be cousidered
as tending to infinity in comparison with the time scale available for tests. From this point of view of
particular interest are data provided by Findley who had shown that Eq. (2) holds for a considerable number
of plastics tested in experiments of up to and over 100,000-h duration, i.e., the deformation for t— o
increases proportionally to t®. Smotrin and Chebanov [12] and also Yatsenko [18] had shown that at
sufficiently high stresses greater than a certain critical Up called in [12] the limit of proportionality and
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in [18] the limit of long-term strength, the total deformation of the material coutains a plastic component
whose rate is independent of t, while being proportional to ¢ —¢_. For certain reinforced plastics, such
as fiberglass and wood—laminate plastics [18], subjected to not very high stresses, the strain ¢ approaches
a certain limit when t — =, i.e., the creep of such materials is limited.

The following singularities of creep and relaxation functions at t —0 should be noted. Equation (4)
does not hold for very small t, since it results in an absurd estimate of strain for t —0. Heunce,t + 7, as
in (8), or t + 1, as in (6) and (11), are to be taken as the arguments of the logarithmic terms of the creep
or relaxation functions. Reverting to Fig. 1, we note that for small t the strain after load application in~
creases very rapidly, so that at the beginning, thecreep curve virtually merges with the axis of ordinates.
Attempts at experimental determination of the actual rate of creep at ¢ = const and very short t (e.g., of
the order of a hundredth of a second) end in failure, since either the creep rate is beyond the capacity of
existing recording instruments, or the tensile test machine is incapable of producing a sufficiently high
rate of loading; or, when the latter is very high, it is impossible to eliminate vibratory effects. Because of
this, virtually all investigations of creep phenomena have come to the conclusion that for an actual material
the creep function must necessarily have a weak (integrable) singularity, such that at ¢ = const and very
small t <A (A is any arbitrary small positive number) the rate of creep ¢ infinitely grows, when A tends
to zero. Such a singularity implies that 7 in (5) must be equal to unity. Hence, the notable tendency of
investigators to resort in the analysis of creep problems to creep and relaxation functions and also to use
kernels of related integral equations with a weak singularity att = 0.

Wheun considering problems of creep in structures made of polymer materials, it is important to
know whether the material is linear. In creep tests of linear material, all components of strain, elastic,
viscous (or viscoplastic), and of elastic aftereffects are proportional (under otherwise equal conditions) to
the applied stress. A useful procedure for determining whether a material is linear is to plot the so~
called isochronous curves ¢ — ¢ derived, for example, from creep curves, A set of creep curves obtained
for various ¢ makes it possible to find the values of € (or creep strain el® ) corresponding to each ¢ for
the same values of t which, in this case, is considered to be a parameter. The points thus obtained repre-
sent, when plotted in the o—~& coordinates, the isochronous curve. An example of such curve in the o—¢ !
coordinates is given in Fig. 2 for samples of isotropic fiberglass plastic 33-18°C cut at an angle of 45° to
the direction of glass fibers and tested at 30°C with €[C] calculated for 168 h. It is seen from this figure
that at low stress the strain elCl ig approximately proportional to the stress; a further increase of stress
causes the strain to cease to be proportional to ¢ and to increase at a more rapid rate, which indicates the
lowering of the strength of the material with increasing ¢. This kind of nonlinearity which results in the
decrease of the strength with increasing ¢ is typical of rigid and strong polymer materials, while another
nonlinearity is typical of elastomers whose rigidity under increasing ¢ first decreases, then increases,
and finally, falls again. '

Of considerable interest and importance is the question whether the nonlinear properties of polymer
materials are in evidence right from the beginning of load application (i.e., from o = 0), or if there is a
certain region of linear behavior. All investigators who have conducted experiments for clarifying this
aspect favor the latter assertion. A large number of works is devoted abroad to the linear viscoelastic
- behavior of polymers (see, e.g., [23, 24]). From a number of Soviet works which mention the question of
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the existence of a region of linear viscoelastic behavior of polymers

. and polymer materials, we would mention three dissertations.® Thus,

MMW Ozerov had noted that the epoxy compounds investigated by him had
shown viscoelastic properties at a temperature of 295°K under stresses

up to o = 0.80y,, where oy, is the tensile strength of the material at the

given temperature, while at higher stresses its nonlinear properties

11 204 i became apparent. Under different conditions and in other polymers,

M'}‘I the noulinearity of the viscoelastic behavior is more pronounced.
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In concluding the survey of creep in plastics under constant stress

and other constant conditions, we would note that, as a rule, actual

Fig. 4 articles and structures are subject to varying stresses, In the case of
materials with creep properties, this is not only due to variation of
external forces, and may occur under constant load.

The behavior of materials under varying stresses is described by four, at present generally accepted,
theories of creep: aging, flow, toughening, andheredity [5]. An important shortcoming of the first two of
these is that their equations are not invariant with respect to the beginning of time count. The theories of
aging and of flow can, however, provide satisfactory results, if the main load acting on the body varies only
slightly with time and if the instant of its application is taken as the reference time. Thus, for example,
stress—relaxation curves calculated by the theories of aging and flow from results of creep tests show a
satisfactory correlation with data of direct experiments on relaxation (Mineunkov: data on Kapron [25], poly-
ethylene, and polypropylene [286]).

With certain limitations (less rigid than here described) the theory of toughening [7] also yields
satisfactory results. However, the coaventional tougheuning theory does not provide for recovery after
the removal of load [5]. Hence, to obtain an acceptable correlation between theoretical estimates and
experimental results on test pieces aund articles, it is necessary to suitably modify these theories.

The theory most widely applied to plastics is that of heredity, which for varying stresses fits experi-
mental data better than any of the theories mentioned above. The heredity and, in particular, the linear
properties of materials may in certain cases be conveniently represented by mechanical models consis~
ting of springs, viscous elements, etc. Models of linear media contain only linear elements, such as
springs and dashpots, Nounlinear mechanical models comprising failing elements were proposed for weak-
ening and thixotropic materials by Regel [27] and by Leonov [28].

The strain properties of a linear mechanical model are equivalent to a medium satisfying the linear
differential equation

Pe = (o (13)

where P and Q are differential operators of the form

d;

a; —-

drt

s

=0

Equation (13) may be rewritten in the form coutaining Volterra's integral operator. The kernel of
the obtained equation can be considered completely independently from the operator equation (13) or from
the related rheological model. Only the Bolzmann=—Volterra general principle of superposition, according
to which the strain produced by the stress oy + g4 is equal to the sum of strains produced by ¢, and oy, is
retained. It is also assumed that the properties of the medium are time-independent, and aging is excluded.
This assumption is not exactly correct for plastics, since their properties vary with time. Data on creep
of AVAM fiberglass plastic as function of its "age" (shown in the diagram in days) from the day of its

*G. I. Bryzgalin, "Certain problems of creep of structural plastics," Candidate's Disseratation, SO AN
SSSR, Novosibirsk (1964).

N. I. Malinin, "Analysis of the problem of creep and strength of plastics," Doctoral Dissertation, Institute
of Problems of Mechanics of the AN SSSR, Moscow (1965).

V. I. Ozerov, "Investigation of anistropic viscoelasticity of oriented fiberglass plastics and of cylindrical
shells in this material," Candidate's Dissertation, Institute of Mechanics of the AN UkrSSR, Kiev (1966).
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manufacture are shown in Fig. 3 [29], where ¢ is the angle between the test
6kgt/m /{ 44 piece ceuter line and the direction of the glass fibers, and oy, is the strength of
% test pieces determined on a tensile test machine. These diagrams indicate

// 477 that the strength and rigidity of the material increase in the age range of 45-730
/7{

/ days. In certain cases, the streugth and rigidity of polymer materials does, how-
[ ever, decrease with time, particularly when aging takes place in humid or cor-
W/ ' rosive atmosphere, Contemporary creep theories, primarily developed for con~
/ £

crete, can be recommended for stress calculations of articles of polymer mater-
ials, whenever it is essential to take into consideration the variation of proper-

/ ties of such materials in time. So far theories of this kind have not been applied
) / / in stress calculations of articles and structures made of polymer materials.

contribution of the o-stresses, prevailing in the time iaterval 8 preceding the

/ instant of time t, to the strain at instant t is
I e % del*l = 6 ()7 (t — 8) a8 (14)

2 / Z 3

/ According fo the Bolzmaunn— Volterra principle of linear superposition the

where J is a smoothly decreasing function of its argument — a function of "memory"
Fig. 5 or the kernel of creep. Integrating this relationship from 0 to t (we assume that

up to the instant t = 0 the body was free of stresses) and taking into account the
elastic strain, which according to the hypothesis of linearity of properties is
related to stress by the Hooke's law, we obtain

tq]»

Z .
I’:G+ESJ t—8)5 () o) (15)

This linear integral equation, when considered in relation to the creep test, shows that the total strain
cousists of two parts: one time~independent, the other —a function of time. If such separation of strain
could be obtained with adequate accuracy from a creep curve, the modulus of elasticity E and the creep
kernel J(t) would be, by the same token, also determined. Unfortunately, such separation is not possible,
since, owing to the previously mentioned singularity of creep curves at t = 0, this cannot be made objec-
tively. Hence, the modulus of elasticity E is determine by some special experiments. It can, for example,
be derived by the frequency method (in which case it is unavoidably a function of circular frequency) or, as
in [3], from the diagram of rapid load removal. In principle, it is not always necessary to separate the
elastic strain from that of creep, i.e., it is possible to consider the total strain as due to creep. This re-
sults in the degeneration of Volterra's integral equation of the first kind (15) into an integral of the kind
of Stieltjes couvolution,

The integral equation (15) can be written with the strain € as the integrand. This results in another
function — the relaxation kernel K(t) which is the resolveunt of the creep kernel — appearing in the integral.
The properties of kernels J(t) and K(t) at t — = and t —0 are of considerable interest. The tendency of J(t)
and K(t) to vanish when t - = is equivalent to the coundition of complete reversibility. Here, obviously, we
mean unot the thermodynamic reversibility, but the total recovery of strain on removal of load. Rigid and
strong plastics, as well as three-dimensional ones, behave in exactely this manner under not too high
stresses, as can be seen from Fig. 4 from the work of Zambakhidze and Rabinovich [30]. The curve shown
in this diagram relates to the "uniformly strong" SVAM fiberglass plastic under tension of ~ 32 kg/mm?
in the direction of one of the glass fibers. Its recovery curve at T = 70°C aud ¢ = 0 is also shown there,

It is clear from this figure that the recovery is total.

Singularities at t — 0 of the form &' = « on the creep curve and of the form ¢ = —« imply that the
kernels must have a weak (integrable) singularity. Fractional expouential functions in the form of power
series expansions for describing creep and relaxation were mentioned above. Below we shall write the
expressions for the kernels of two functions with the view to their application to solving practical prob-
lems by operational-symbolic methods. For the Rabotnov kernel (see [5], p. 128), we have

5 Bt Bn(t__,r)n(um)a
Btmm= 2 Tl F 0 A F 2] (18)
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The second kerunel, considered in [31-33),is the resolvent of the Rzhanitsin kernel, which is a frac-
tional exponential function., It is of the form

E 8, %, t— vl =e D, (x, t — 6) (17)

It was shown in the previously mentioned dissertations that the Rabotnov kernel (16) defines with
sufficiently high accuracy the creep of polymers and polymer materials. Furthermore, Ozerov, who in
his dissertation had dealt with various loading programs including those in which stress and strain were
varied in jumps, confirmed once again the validity of the Bolzmann—Volterra principle of superposition for
polymer materials (epoxy resins, fiberglass plastics) in the region of linear behavior of these.

A method of computer calculation yielding a reasonably accurate determination of the Rabotnov ker-
nel parameter from experimental data was suggested in [34].

The nonlinear viscoelastic behavior of polymers at fairly high stresses has been already noted above.
The nonlinear relationships of viscoelasticity of polymers can be derived, if one assumes that the inherited
strain not only contains the contribution defined by the right-hand side of Eq. (14), but also depends on
terms which determine the effect of stresses acting at various instants of time preceding the one under
consideration. This assumption leads to the nonlinear Frechet integral equation written for nonaging .
materials with heredity properties in the form

M =

3 12
e =N (o) .o, €01 t—0) 0. a0, (18)
0

=1

1l

where kernels Jj can have strong singularities, for example, in the form of Dirac d-functions; these strong
singularities determine momentary strains,

The nounlinear integral equations of the form of (18) were used by Ward [35, 36] for defining creep in
uniaxial tension of polypropylene fibers, while Findley [37] had used these for describing the creep of non-
plasticized polyvinyl chloride under conditions of complex stressing. Ward retained in the Frechet expansion
single and triple integrals, and Findley used single, double and triple integrals. Control experiments car-
ried out by these authors had shown a good correlation between theoretical estimates and experimental data.

Unfortunately Eqs. (18) are complex and their use for solving practical problems is difficult, hence,
the understandable efforts of several investigators to find simple relationships for describing the heredity
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properties of polymers. The writer [3] has made the following attempt. Let us
assume that the dependence of the inherited strain on stress o (§) is not linear,

\ Wk as in (14), but is of the more general form
g

Wl a6l = J [o (6), ¢ — 8] 4O {19)

i

If the elastic strain is a linear function of stress, the integration of this
equation yields

4
e(t):-%—}—&.f{s(e),t——e]de (20)
W& 0

The linearity of the dependence of the elastic strain el®l on stress was
checked for nonplasticized polyvinyl chloride. As an example, the curves related
7 to loading and unloading at a temperature T = 15°C are shown in Fig. 5. The load-
\ ing rates for test pieces Nos. 49, 80, and 82 were, respectively, ¢’ = 8.6 x 10-3

kg/mm? sec, 3.86 x 10~% kg/mm? sec, and 6.6 kg/mm? sec.

& -4 -2 0 I 4 The application of load in these tests was fast with an even faster unleading
.t (0.03 sec), which was considered to be virtually instantaseous. The unloading
Fig. 7 was represented on the diagram by a straight line, and the Young modulus was

determined by the tangent of its angle of inclination.

Experimental checks had confirmed the nonlinear principle of superposition defined by Eq. (20) and
have enabled usto distinguish more or less clearly three subregions in the range of stresses from o =0
to g = o}, (ultimate tensile stress). In the linear subregion the material behaves as a viscoelastic one.

In the subregion of weak nonlinearity,function J(o,t — 8) can be represeunted as the product of two functions:
one, a function of ouly o, and the other of only t — 9. Finally, at highstresses we have the subregion of
strong nonlinearity where such separation is not possible., The latter aspect can be considered together
with the effect of the acting stress on the relaxation time of the material, as was done by Rabinovich (see
e.g., [2, 30]).

For an anisotropic body, Eq. (20) was rewritten by Bulgakov [38, 39] in the generalized form

t

o O =10+ {1t =0, 5,40, 7©)1d0 (505200, (21)
]

which takes into account possible temperature effects.

He had carried out tests at constant temperature on tubular test pieces of organic glass and poly-
ester resin subjected to tension, compression, aud torque, as well as to combined compression and torque.

These had shown that the nonlinear principle of superposition defined by (21) is satisfied with reasonable
accuracy at T = const.

Yet another equation for describing the heredity properties of polymer materials in the regioun of
strong nonlinearity was proposed in 1951 by Rozovskii, It is based on the nonlinear integral equation of
the Volterra kind of the form

4
s(t):—%—+g.l(c,t—~9)s(8)d6 (22)
(1]

Here, unlike in Egs. (20) and (21), the stress ¢ in the argument of the nonlinear kernel J is cousidered
as a function of t — 9. Equation (22) was used in [40] for comparing the results of experiments on creep ina
condition of periodic loading with those under static load. The relationship derived by the author for the
determination of creep properties of a material in the presence of periodic stress component on the basis
of static tests was experimentally checked (by Buyanov, Kasyuk, and Panshin) on CO-~120 organic glass
under conditions which prevented heat generation in the sample itself. This check had confirmed the pos-
sibility of using Eq. (22) for determining the heredity properties of materials, provided the temperature of
the sample, either caused by external or internal heating owing to dissipation of mechanical energy, remains
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EL.[L;J % | - [see, e.g., Eq. (15)], except that time normalized with respect to tem-
[ perature is substituted everywhere for actual time. Moreover, aterm
; ; | .8 which takes into account temperat;ure—induced stresses is introduced
2ok o7 1 o in the physical relationships. The concept described in [46, 47] is
:1; supported by Il'yushin and Ogibalov [48].
Zi o The formula of Williams, Landel, and Ferry (see, e.g., [23]) is
Y S generally used for the determination of the dependence of coefficient
©J . ar on temperature. Recently this formula was experimentally con-
ig 1 6o firmed, although the basic concept of its authors was criticized.
Ve [0
L 2;? iR It should be noted that the councept of simple thermorheological
° //jf $ behavior and also relationships of the form of the Williams—TLandel—
@ Ferry formula are valid for amorphous polymers ouly. A number of
. i crystalline polymers can be listed for which this concept is com~
a5 ha S i pletely invalid. The greater complexity of the temperature-dependence
5 ,ﬁ . of relaxation of crystalline polymers is caused by cousiderably greater
: sensitivity of their structure to temperature and other effects and the
% > kg/mm’ effect of the structure on the properties of such materials is much more
g 7 ; 4 Jf pronounced than in the case of amorphous polymers.

Fig. 9 Wheu cousidering the viscoelastic behavior of polymers and poly-
mer materials in variable and nonstationary temperature fields, it can
also be assumed that the parameters and functions appearing in the he-

reditary relationships depend on temperature., Equation (21), which also contains the temperature, can be
applied to a wider range of materials thanthe thermorheologically simple ones.

Problems of creep in plastics under conditious of unidirectional stress were considered so far.
Under conditions of complex stresses, the behavior of polymer materials depends to a considerable extent
on whether these are isotropic or anisotropic. Let us first consider the properties of isotropic materials.

In the case of isotropic materials with linear-heredity properties the system of physical equations
relating the componeants of stress—strain tensors is divided into two tensor equatious: one for spherical
tensors, the second for deviators. For a body with linear properties, the relation between the 0ij and the

Eij components can be written in the form

|4 it
45 () = 85 [ Busy (0] + g Bi(t— )5y, () de] T () + § J1(t—8);; (9) 4D (24)
0 [

This is a Volterra integral equation of the first kind. Summation is carried out with respect to the
double subseripts. For a weakly noulinear body, Eq. (24) was geuneralized by Findley, and, in accordance
with Leaderman's nonlinear integral equation, written as follows:

t t
£y (8) =0y, {Bof [0 (0] + Q By (t — 8) 1[5, (6)] de} + ToF [s; (0] + S Ti(t—8) F [5,;(0)] 9, . (25)
[}

]

where f and F are nonlinear functions of oy and Tijs such that at low stressf and F degenerate into oy
and 0ijs respectively.

The majority of authors, when solving practical problems, take into consideration hereditary pro-
perties only in relation to shear strain., Polymer materials under volume tension (compression) behave
as elastic bodies and are sometimes counsidered as being incompressible. In the majority of cases, the
inaccuracies in the definition of bulk properties of a material (the adjective "bulk" is used here to denote
the properties of material relative to the strain resulting from volume tension or compression)do not
appreciably affect the results of calculations of the pattern of the stress—strain state, There are, how-
ever, problems in which an injudicious choice of the law definingbulk properties substantially affects the
results. Oneof such is the plane problem of deformation of a hollow viscoelastic cylinder with an outer
elastic shell and an inner ablative surface under internal pressure. This problem was considered by
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w07 e 78 constant. If the periodic component of stress has a sufficiently
:,\ M‘*‘* high frequency and a vot very small amplitude, the self~heating

00 ‘ R of the material induced by mechanical losses must be taken into

‘ account {41]. The phenomenoun of vibration-induced heat generation

f ; in polymer materials was investigated by Barenblatt et al, [41],

20 a ; who had noted that this did sometimes increase the rate of creep
’ by 2/10-3/10. As the main cause of creep acceleration under

& B %%,.\,w vibratory conditions, the authors of [41] considered the effects of
”WW@M! . vibratory heating which results in lowering of mechanical pro-

T F 5 W T e perties of polymers and the related increase of the rate of € for
1%, min a given o, in accordance with the known temperature~dependence
Fig. 8 of the relaxation properties of polymer materials. Maksimov aund
Urzhumtsev {42} found that small vibrations accelerate the creep
rate not only by increasing the temperature of material, but also in
consequence of some other effects unconnected with those of tem-
perature,

When dealing in a previous section with stress relaxation, attention was drawn to the effect of the
loading program for the initial stage during which the stress rises from € =0 to € = g;,. In addition to
the data presented there, we should note the work of Sharma [43], who had investigated the stress relaxa~
tion of penton in the nounlinear region, and for the curves defining this phenomenon at various rates of
strain €, during the loading stage proposed the relaxation function of the form

¥ (i, e0) = @ (1) (e0)® (23)
where time t is counted from the instant at which the strain reaches a specified value.

It should be noted here that the effect of the rate of £, on the pattern of consequent creep and re-
laxation curves is in itself not surprising. Since various rates of £, obtain at various loading programs,
the laws of stress variation with time will also vary in the course of an experiment on relaxation. How-
ever, owing to the indicated above property of hereditary materials, according to which the creep and
relaxation kernels tend to vanish when their argument t — ¢ tends to infinity, the material, after extended
periods of time, must have a tendency to "forget" gradually the initial singularities of the loading program.
For example, the relaxation curves obtained for various €," should in the course of time merge into a
single curve by virtue of the laws of linear and nonlinear heredity. Koltunov [44], referring to his not
eutirely convincing data, suggests the introduction of & in addition to € ando into his nonlinear integral
equation of the Rabotnov kind (see [5], p. 209).

The effect of initial stages of the loading program on the relaxation curve pattern, based on data of
Sharman and Haas [43], is shown in Fig. 6. Initial sections of relaxation curves obtained during tests at
five different rates of ¢, are shown in Fig. 6a, where points 1-7 relate to 10° x €47 = 23, 27, 41, 56, 66,
108, and 115, respectively. At the beginning the increase of ¢ is consistent with the rate of £,°, then follows
the relaxation process. Results of a more prolonged experiment are shown in Fig. 6b, where points 1-5
relate to 10% x €y° = 25, 20, 15, 10, and 5, respectively. The ratio of rates of £, in the various tests was
approximately the same as in Fig, 6a, According to conventional theories of heredity, the differences
in the injtial stages of tests on various specimens should have vanished from their memories after 10,000
min, and the curves should have merged. However,it was not so, as shown by the approximately 5% dif-
ference in the value of ¢ ou curves correspounding to the lowest and highest values of €y, respectively.

As regards the temperature-dependence of creep and relaxation properties of polymers and polymer
materials, the following should be noted. The majority of investigators consider polymers and polymer
based materials as thermorheologically simple bodies. The term "thermorheologically simple body" was
introduced in 1952 by Schwartzl and Staverman [45]. The strain of such body under a given stress and at

temperature varying from T, to T is the same as at temperature T, but the rate of creep strain develop-

ment is altered by a factor ape

Moreland and Lee [46] and later Sternberg and Gurtin [47] proposed to consider problems of visco-
elasticity in variable and nonstationary temperature fields of thermorheologically simple bodies in the fol-
lowing manner. In the general system of equations defining the problem, only the equations of physics
are associated with temperature. The latter are written in the form corresponding to constant temperature
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Huag et al [49], who had used the law of bulk relaxation derived from experi-
mental data obtained by Merwin, Aldrich, and Seki with the use of temperature ~
time superposition, as described in [23], pp. 467-468.

Data on the frequency~dependence of polyisobutylene bulk modulus at
T = 25°C, converted to the bulk relaxation modulus by the approximate formula
of Ninomi and Ferry ([23], pp. 93), are showu in Fig. 7 in log K—log t coor-
dinates (K is the bulk modulus in dyne/ cmz). It is seeun that the variation of the
relaxation modulus K(t) in the range of log t from -5 to +2 is of the order of
0.85 tenths (t is in sec). The depeundence of the relaxation modulus G on time
is, also, shown for comparison. The analysis had shown that in this problem
the results of stress field calculations depend on the extent to which the bulk
creep of the material is taken into account.

Sharma and McCarty [50] had measured directly the bulk creep of the "Hycar" elastomer (cross-
linked copolymer of butadene and acrylic acid) highly filled with inert and live fillers. The bulk creep and
relaxafion moduli were investigated by Theocaris [51]. His data on these moduli for the C-100-0-8 cold-
setting epoxy resin are shown in Fig. 8. To extend the time range he had also used the principle of
temperature —time superposition.

The temperature of 298°K is normalized by
B* = T/298 B(t).107° dyn x em? Kr =22 K()-101 dyn-l ¥ cm?
J ! 7 ° .

The coefficients at B and K represent temperature corrections which take into account the increase
of the equivalent modulus of the polymer with increasing temperature, in accordance with the kinetic theory
of elasticity of rubber,

The product of the relaxation modulus and pliability is also shown in Fig. 8. According to the for-
mula given by Bronskii [52], this product must be equal tounity. It is, however, seen that wheun creep is suf-
ficiently prominent, it differs considerably from unity.

Findley [10] had experimentally checked the possibility of using Eqs. (24) and (25) for defining the
creep of isotropic glass-like polymers (annealed strong polyvinyl chloride tested at room temperature), It
was established that Eq. (24) and, even better, Eq. (25) in which functions f and F depend on their argu-
ments according to the hyperbolic sine law, define the inherited component of total strain with adequate
accuracy. Noulinear integral equations of the form of (18) with single, double, and triple integrals re-
tained were used in [37] for describing the nonlinear hereditary properties of isotropic polymers under
complex stress and complicated loading program.

This equation with respect to tensor components £; and 5 is quadratic, since third power terms are
expressed by quadratic terms in accordance with the Cayley—Hamilton identity. Scalar functions, of which
there are 12 or 9 depending on whether the stress state is three~dimensional or plane, contain the first,
second, and third invariants of the stress tensor.

In concluding this section, it seems expedient to consider the results of experiments on creep [53]
carried out on tubular test pieces of polymethyl metacrilate plastic under combined tension and torque:

points 1 2 . 3 4 5 6 7 8 -
t/s= 0 0.2 03 034 04 05 062 0.8

poins 9 10 11 12 13 14 15
t/s= 0.9 0.9% 1.0 1.07 1.8 20 —oo

These results are shown in Fig. 9 in coordinates of creep strain ai[c] and oj. The test, which lasted
5 h, was at room temperature and under simple loading. The ratio of tangential to tensile stress J/o was
varied from 0 to «. Tt can be seen from Fig. 9 that in spite of some scatter the experimental points lie in
a fairly narrow band. All points obtaived at coustant 7/ ratio lie in an even narrower band, which shows
that the position of a particular point in this diagram depends not ounly ou the given g, but also on the /o
ratio. Thus, under specific conditions ¢j definese, in the first approximation only. It seems that the
relationship between scalar invariants of the stress and strain tensors is affected not only by the second
variant of tensor ojj, but also by the first and third invariants. Unfortunately, this problems remains at
present virtually unexplored.
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Certain data cited in the same paper prove that the relationship between deviators of stress and
strain tensors is linear with respect to these tensors ounly in the first approximation, while nonlinearity
may become prominent at cousiderable strains of the order of 100%.

A series of experiments on creep of polymer materials uader complex stressing in simple and com-~
plicated loading programs was carried out at the Institute of Polymer Mechanics [54, 55]. The obtained
data are interpreted on the basis of Malmeister's theory, a variaunt of the plastic slip theory.

It should be uoted that from the point of view of maximum utilization of the strength of material the
use of isotropic plastics in highly stressed articles and structures is inadvisable. Techunologists, design-
ers, and engineers have at their disposal various means for increasing the resistance of polymer mat-
erials in the direction of maximum stress, sometimes at the expense of weakening the material in another
direction where stresses may be much lower.

Generally anisotropic materials have, also, anisotropic creep properties. Unfortunately there have
been recently ouly a few works dealing with the investigation of anisotropic polymers on the basis of phe~
nomenological theories. As an example of experimental work in this field, the paper by Smotrin and
Chebanov [12], who had investigated creep of testone test pieces cut under various angles to the base
material, may be quoted.

Attention should be drawn here to two theoretical papers devoted to the determination of the stress—
strain relationship at cousiderable deformations. Ultimate strain can be determined by various meauns of
which the most theoretically sound is the determination of the stress tensor in terms of the metric tensor
of a moving system of Lagrangian coordinates related to mass points by equation [56]

€5 t) =1 [gij' (8) — g5 (M] (26)

where gij(t) are the metric tensors of this system at instant of time t, and g;;(0) are the tensors at t =0
[gij(O) is usually taken as the unit tensor], The strain is thus uniquely definecji by the metric tensor gij(O),,

The most general expression for the relationship between the stress and strain tensors for a medium

with time~independent hereditary properties was proposed by Pipkin [67] in the form

9X, (1) 0X, (1)
%1 ="3, Pz
2] [od

S g (1 —0) Ilg’;o] 27)

where SPY is the stress tensor at a given point of the material in the system of Cartesian coordinates Xj
and x; attached to the material. The expression in brackets implies that SPY is a functional of 8- The
functional is subsequently expanded into a Frechet series, and various possible forms of presentz;tion of
the obtained relationship are analyzed.

Similar constructions are developed by Herrmaun {58] with the use of a variaunt of the poteatial theory,

In conclusion we note certain practical investigations devoted to the development of fundamental
principals of the theory of viscoelasticity and of solving boundary value problems.

An attempt at a strict axiomatic construction of a linear theory of viscoelasticity was made by Gurtin
and Sternberg ([59] and other works). They have investigated such aspects as the existence and uniqueness
of solution, analysis of certain properties of boundary value problems, generalization of known theorems
and principles of the theory of elasticity (Beatty's theorem, the prinicple of St. Venant, etc.), and the pos-
sibility of extending the methods of Galerkin, Papkovich, and others to problems of viscoelasticity,

Theoretical problems of viscoelasticity differ from those of elasticity in that physical relationships
in the former contain time, so that the stress—strain relationship appears there either as an operator
equation with d(-)/dt as the operator, or as a Volterra equation of the kind described in the foregoing. To
solve the stated boundary value problem of the theory of viscoelasticity the difficulties related to the time~
dependence of the deformation process must be overcome. Manyproblems are solvedby using the Laplace
transformation (see, e.g., [60]) which reduces it to the so-called conjugate problem of elasticity in the
mapping space. The solution of such problems depends on the transformation parameter p. The solution
is obtained by carrying out the inversion of transformation. In certain cases, solution of the conjugate
problem of elasticity is very involved, and the inversion of the Laplace transformation impossible. In such
cases, numerical methods, usually with the aid of a computer, are resorted to (see, e.g., [61]) or various
approximate methods are used [62].
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Morland [63] solved the problem of rolling contact of the linear theory of viscoelasticity by means of
the Fourier transformation.

In certain problems (e.g., those containing mixed boundary counditions or related to an ablating sur-
face), the conjugate problem of elasticity remains undefined and the method of integral transformation can-
not be used.

Problems of linear viscoelasticity can be analyzed by the method of Volterra based ou the following.
Differentiation (when operational equations of physics are used) and integration (if these equations are
integral equations of Volterra) with respect to time are interchangeable with similar operations with respect
to space coordinates. Hence, problems of viscoelasticity can be solved as in the theory of elasticity, al~
ways bearing in mind that the parameters in the equations of physics are not merely constants but time-
dependent differential or integral operators. The integrationof differential equations in partial derivatives
with respect tc space coordinates yields differential, integral, or integro-differential equations with t as
the variable. Integration of these equations provides the solution of the problem. Examples of this ap-
proach appear in the papers of Shinozuka [64] and of Badran [65]. Owing to the great complexity of these
equations, their integration is carried out by numerical methods on a computer.

Rabotnov [5] and later Rozovskii with his collaborators had developed a method based on the principle
of Volterra, according to which the solution of a problem of elasticity, in which viscoelastic operators have
been substituted for elasticity constants, are also valid for viscoelastic materials. The interpretation of
such solutions preseunts certain difficulties, owing to the necessity to carry out algebraic and other mathe-
matical operations on the operators. Rabotnov and Rozovskii with their collaborators [16] had developed
a fairly detailed algebra for operators with fractional exponential kernels. A number of asymptotic for-
mulas aimed at the simplification of calculation of 9, -functions for a considerable range of t, is proposed.
Tabulation of 9 ~functions has now been completed at the Mechanical Engineering Institute. An attempt is
being made by Gromov [33] to formulate an algebra of integral operators based on kernels (16).

The methods described here have been used by numerous researchers in the USSR and abroad for
analyzing many problems of the theory of linear viscoelasticity.

Particular attention is at present being paid by researchers to the analysis of properties of composite
materials in terms of properties of their coustituent phases. Several problems of this kind were considered
by Skudra.* He had investigated the behavior of reinforced polymer materials (e. g., fiberglass) in terms
of the filler and binder properties, concentration of the binder, and the orientation of reinforcing elements.
The reinforcing elements were assumed by the author to be of rectangular cross section and the stresses
in these and in the binder to be uniformly distributed. Creep of the reinforcing elements was taken into
account and the binder and filler were considered to be normal linear bodies.

Wang Fou Fu [66, 67], considering a similar problem, assumed that the reinforcing filaments were
distributed in the cross section at nodal points of a regular doubly periodic mesh. He took into considera-
tion the effects of stress coucentration in the binder in the gaps between filaments, and described creep by
the Volterra integral equation with Rabotnov kernels.

Bolotin [68] had introduced the concept of so-called "diffusion™ into the theory of reinforced media,
according to which the higher strength of reinforcing elements is not concentrated in any specific parts of
the material but is uniformly "diffused" throughout its volume. Using variational principles, he had estab-
lished that the medium must conform to the fundamental relationships of the Voigt—Kosser momeuntary
stress. Extension of this concept to viscoelasticity by using differential operators was proposed.

Teregulov [69, 70] investigated creep iu plates and shells of viscoelastic material using the principle
of Volterra and of Rabotnov operators. He established [70] that uader an external load exceeding a certain
critical value, determined by the long-term moduli of the plate, the deflection of the plate w1th some devi-
ation from a perfect form increases with time, approximately as shown in Fig. 10, where t* is the point of
inflection. In accordance with Shesterikov's definition of the critical state, the time corresponding to the
point of inflection is suggested as the critical time ty. The instant of time at which the deflection exceeds
its initial value by a factor k is proposed in [71] as the definition of critical time. The initial deflection
allowance and the amount of permitted deflection are taken into cousideration in the selection of k.

*A, M. Skudra, Doctoral Dissertation, Institute of Problems of Mechanics, AN SSSR (1967).
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Huang and Lee [72] solve the known problem of strain in a viscoelastic cylinder enclosed in an elas-
tic shell under internal pressure, taking into consideration the ultimate strain and using Eq. (26) to deter~
mine the strain., A similar analysis was made by Badran [65] who used the logarithmic representation of
the ultimate strain, as suggested by Hankey.

Il'yushin and Ogibalov [73] had attempted to formulate a general linear tensor theory of viscoelasti-
city based on relationships of the type of (18) in which only single and triple integrals with only linear
tensor terms were retained in the right-hand side. Moskvitin [74], when cousidering the same theory,
assumed the physically nonlinear terms to be proportional to a certain small parameter, and suggests
solving the boundary value problem by the method of successive approximations.

Pobedrya [75] had proved by means of functional analysis a number of theorems for linear visco-
elasticity defined by Eq. (18), and in [76] proposed a method for constructing the resolvents of kervels of
this type of functionals.

A further case of nonlinear viscoelastic behavior of thermorheologically simple bodies induced by
vibratory heating was cousidered by Barenblatt [77].

Unfortunately, the formulation of new theories is not always supported by experimental data which
would confirm or refute theoretical deductions.
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